Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

<B5>

<18/03/2022>

CONTINUOUS INTERNAL EVALUATION - 3

Dept: BS		Sub: ADDITIONAL MATHEMATICS I	
Date:21/03/202	Time:3:50-5:00 pm	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks
	PART A	
1 a	A particle moves along the curve $x=1-t^3$, $y=1+t^2$ and $z=2t-5$ determine its velocity and acceleration.	8
b	Find the angle between the tangents to the curves $\vec{r} = t^2 i + 2tj - t^3 k$ at the points ± 1	8
	If $x=t^2+1$, $y=4t+3$, $z=2t^2-6t$ Determine unit tangent vector any point.	9
	OR	
0.00	If $\Phi(x, y, z) = x^3 + y^3 + z^3 - 3xyz$, find $\nabla \Phi$ at $(1,-1,2)$	8
b	Find the unit tangent vector at any point t on the curve $\vec{r} = 3 \cos i + 3 \sin i j + 4t k$	8
c	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$,	9
	$x^2 + y^2 - z^2 = 3$ at $(2, -1, 2)$	
	PART B	
a	With the usual notation, deduce the reduction formula for	8
		Page: 1 / 2

$\int_{0}^{\frac{\pi}{2}} \sin^{n}\theta d\theta$	
b Find the directional derivative of $\Phi = x^3 y^3 z^3$ at $(1,2,1)$ along $i+2j+2k$	8
c Find div \vec{F} and curl \vec{F} where $\vec{F} = \nabla(x^3 + y^3 + z^3 - 3xyz)$. 9
OR	
4 a With the usual notation, deduce the reduction formula for $\int_{0}^{\frac{\pi}{2}} \cos^{n}\theta d\theta$	8
b Find the directional derivative of $\Phi = 4xz^3 - 3x^2y^2z$ at (2,-1,2) along 2i-3j+6k	8
c Find the constants a,b,c such that the vector field $(siny+az)i+(bxcosy+z)j+(x+cy)k$ is irrotational.	9

Prepared by:

Nayana P

HOD